神经辐射场(NERF)在建模3D场景和合成新型视图图像方面取得了巨大成功。但是,大多数以前的NERF方法需要大量时间来优化一个场景。显式数据结构,例如体素特征,显示出加速训练过程的巨大潜力。但是,体素特征面临两个大挑战,要应用于动态场景,即建模时间信息并捕获不同的点运动尺度。我们通过用时间感知的体素特征(称为Tineuvox)表示场景来提出一个辐射现场框架。引入了一个微小的坐标变形网络,以模拟粗糙运动轨迹,并在辐射网络中进一步增强了时间信息。提出了一种多距离插值方法,并应用于体素特征,以模拟小运动和大型运动。我们的框架大大加快了动态光芒度场的优化,同时保持高渲染质量。经验评估均在合成场景和真实场景上进行。我们的Tineuvox仅需8分钟和8 MB的存储成本即可完成培训,同时表现出比以前的动态NERF方法相似甚至更好的渲染性能。
translated by 谷歌翻译
现有的神经结构搜索算法主要在具有短距离连接的搜索空间上。我们争辩说,这种设计虽然安全稳定,障碍搜索算法从探索更复杂的情景。在本文中,我们在具有长距离连接的复杂搜索空间上构建搜索算法,并显示现有的权重共享搜索算法由于存在\ TextBF {交织连接}而大部分失败。基于观察,我们介绍了一个名为\ textbf {if-nas}的简单且有效的算法,在那里我们在搜索过程中执行定期采样策略来构建不同的子网,避免在任何中的交织连接出现。在所提出的搜索空间中,IF-NAS优于随机采样和先前的重量共享搜索算法,通过显着的余量。 IF-NAS还推广到微单元的空间,这些空间更容易。我们的研究强调了宏观结构的重要性,我们期待沿着这个方向进一步努力。
translated by 谷歌翻译
神经辐射场(NERF)在代表3D场景和合成新颖视图中示出了很大的潜力,但是在推理阶段的NERF的计算开销仍然很重。为了减轻负担,我们进入了NERF的粗细分,分层采样过程,并指出粗阶段可以被我们命名神经样本场的轻量级模块代替。所提出的示例场地图光线进入样本分布,可以将其转换为点坐标并进料到radiance字段以进行体积渲染。整体框架被命名为Neusample。我们在现实合成360 $ ^ {\ circ} $和真正的前瞻性,两个流行的3D场景集上进行实验,并表明Neusample在享受更快推理速度时比NERF实现更好的渲染质量。Neusample进一步压缩,以提出的样品场提取方法朝向质量和速度之间的更好的权衡。
translated by 谷歌翻译
在本文中,我们提出了一种自我监督的视觉表示学习方法,涉及生成和鉴别性代理,我们通过要求目标网络基于中级特征来恢复原始图像来专注于前者部分。与事先工作不同,主要侧重于原始和生成的图像之间的像素级相似性,我们提倡语义感知生成(Sage)以促进更丰富的语义,而不是在所生成的图像中保留的细节。实现SAGE的核心概念是使用评估者,一个在没有标签的情况下预先培训的深网络,用于提取语义感知功能。 Sage与特定于观点的功能补充了目标网络,从而减轻了密集数据增强所带来的语义劣化。我们在ImageNet-1K上执行Sage,并在包括最近的邻居测试,线性分类和细小图像识别的五个下游任务中评估预训练模型,展示了其学习更强大的视觉表示的能力。
translated by 谷歌翻译
变压器提供了一种设计神经网络以进行视觉识别的新方法。与卷积网络相比,变压器享有在每个阶段引用全局特征的能力,但注意模块带来了更高的计算开销,阻碍了变压器的应用来处理高分辨率的视觉数据。本文旨在减轻效率和灵活性之间的冲突,为此,我们为每个地区提出了专门的令牌,作为使者(MSG)。因此,通过操纵这些MSG令牌,可以在跨区域灵活地交换视觉信息,并且减少计算复杂性。然后,我们将MSG令牌集成到一个名为MSG-Transformer的多尺度体系结构中。在标准图像分类和对象检测中,MSG变压器实现了竞争性能,加速了GPU和CPU的推断。代码可在https://github.com/hustvl/msg-transformer中找到。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Increasing research interests focus on sequential recommender systems, aiming to model dynamic sequence representation precisely. However, the most commonly used loss function in state-of-the-art sequential recommendation models has essential limitations. To name a few, Bayesian Personalized Ranking (BPR) loss suffers the vanishing gradient problem from numerous negative sampling and predictionbiases; Binary Cross-Entropy (BCE) loss subjects to negative sampling numbers, thereby it is likely to ignore valuable negative examples and reduce the training efficiency; Cross-Entropy (CE) loss only focuses on the last timestamp of the training sequence, which causes low utilization of sequence information and results in inferior user sequence representation. To avoid these limitations, in this paper, we propose to calculate Cumulative Cross-Entropy (CCE) loss over the sequence. CCE is simple and direct, which enjoys the virtues of painless deployment, no negative sampling, and effective and efficient training. We conduct extensive experiments on five benchmark datasets to demonstrate the effectiveness and efficiency of CCE. The results show that employing CCE loss on three state-of-the-art models GRU4Rec, SASRec, and S3-Rec can reach 125.63%, 69.90%, and 33.24% average improvement of full ranking NDCG@5, respectively. Using CCE, the performance curve of the models on the test data increases rapidly with the wall clock time, and is superior to that of other loss functions in almost the whole process of model training.
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译